1104 Chemistry Letters 2002

Alkylation-Acylation of Aromatics with γ -Butyrolactone Catalyzed by Heteropolyacids Supported on Silica

Jianxin Mao, Tetsuo Nakajo, † and Toshio Okuhara*

Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810

†Showa Denko K. K., 5-1 Ohgimachi, Kawasaki-ku, Kawasaki 210-0867

(Received July 12, 2002; CL-020585)

Silica-supported $H_4SiW_{12}O_{40}$ catalyzed efficiently alkylation/acylation of 1,3,5-trimethylbenzene or p-xylene with γ -butyrolactone to 4-(2,4,6-trimethylphenyl) butyric acid or to dimethyl- α -tetralone (5,8-dimethyl-3,4-dihydro-2H-naphtalen-1-one), while other typical solid acids such as zeolites and SiO_2 - Al_2O_3 were much less active.

Derivatives of α -tetralone (3,4-dihydro-2<u>H</u>-naphtalen-1-one) are important raw materials for medical supplies. Practically, α -tetralone has been synthesized from benzene and succinic anhydride via multi-steps. ^{1,2} While one-step synthesis of α -tetralone from benzene using γ -butyrolactone was proposed, until the present day, only a system using an excess amount of AlCl₃ has been reported. ^{3,4}

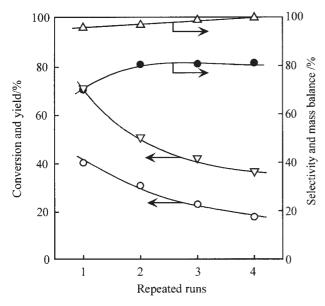
Here we wish to report the catalytic synthesis of dimethyl- α -tetralone from γ -butyrolactone by using the supported heteropolyacids. The catalytic activities for 1,3,5-trimethylbenzene with γ -butyrolactone (Eq. (1)) were first examined over various solids. Then the reaction of p-xylene with γ -butyrolactone (Eq. (2)) was performed with the selected solid acid catalysts.

The reactions of 1,3,5-trimethylbenzene and p-xylene with γ -butyrolactone were performed in a stainless autoclave (volume, 100 or $40\,\mathrm{cm}^3$) using a mixture of 1,3,5-trimethylbenzene ($40\,\mathrm{cm}^3$, 288 mmol) and γ -butyrolactone ($2.6\,\mathrm{cm}^3$, 34 mmol) and a mixture of p-xylene ($81\,\mathrm{mmol}$) and γ -butyrolactone ($0.74\,\mathrm{mmol}$), respectively. The following solid acids were used; $H_3PW_{12}O_{40}$ ($6\,\mathrm{m}^2\mathrm{g}^{-1}$) and $H_4\mathrm{SiW}_{12}O_{40}$ ($5\,\mathrm{m}^2\mathrm{g}^{-1}$, Nippon Inorganic Color and Chemical) and their silica (Aerosil 300, $274\,\mathrm{m}^2\mathrm{g}^{-1}$)-supported catalysts (abbreviated as HSiW/SiO₂ and HPW/SiO₂, respectively) calcined at 523 K in air. $C\mathrm{s}_{2.5}H_{0.5}PW_{12}O_{40}$ was prepared as described previously. $^{5.6}$ H- β zeolite (Si/Al = 12.5, Sud Chem.), H-ZSM-5 (Tosoh, HSZ-860HOA, Si/Al = 37), H-Y (JRC-Z-HY 4.8, Si/Al = 2.4), H-mordenite (JRC-Z-HM-20, Si/Al = 10), and SiO₂-Al₂O₃ (JRC-SAL 2, 546 $\mathrm{m}^2\mathrm{g}^{-1}$) were also used after the calcination at 773 K in

air. The products were analyzed with a GC (Shimadzu 14B) with a capillary column (5%PHME silane), ¹H NMR spectrometer, GC-MS, and IR spectrometer.

Table 1 summarizes the catalytic data for the reaction of 1,3,5-trimethylbenzene with γ -butyrolactone over various solid acids. The main product was identified to 4-(2,4,6-trimethylphenyl) butyric acid (1 in Eq. (1)) with the GC, IR spectrometer, ¹H NMR spectrometer, and GC-MS, showing that the alkylation took place. A possible product by the acylation, 4-hydroxy-1-(2,4,6trimethylphenyl)-butan-1-one and derivatives were little formed under these reaction conditions. Table 1 demonstrates that the heteropolyacids and their SiO₂-supported catalysts exhibited high conversions of γ -butyrolactone and the yields of 1. On the contrary, zeolites (H- β , H-Y, H-ZSM-5, and H-mordenite), and SiO₂-Al₂O₃ gave poor activities for the formation of 1. While H- β gave a high conversion of γ -butyrolactone, the product was only the oligomers. The superiority of these heteropoly compounds in the yield suggests that their strong acidities⁶⁻⁸ are responsible for the acceleration of the reaction.

Table 1. Catalytic data for reaction between 1,3,5-trimethylbenzene and γ -butyrolactone


Catalyst	Conv.	Yield /%	TON ^a	S ^b /%	M.B. ^c /%
10 wt%HSiW/SiO ₂	44.9	30.7	49.1	97.1	87
10 wt%HPW/SiO ₂	41.6	25.1	56.2	100.0	84
$H_4SiW_{12}O_{40}$	85.1	33.5	5.4	97.6	49
$H_3PW_{12}O_{40}$	91.0	46.6	10.4	96.3	56
$Cs_{2.5}H_{0.5}PW_{12}O_{40}$	60.9	23.5	34.9	88.9	66
H-Y	11.7	2.6	0.2	67.9	91
H-ZSM-5	4.1	1.7	1.2	40.4	91
H- eta	47.2	0.0	0.0	0.0	53
H-mordenite	5.9	0.0	0.0	0.0	94
SiO_2 - Al_2O_3	17.7	0.0	0.0	0.0	82

^aTurnover number defined by the ratio of the amount of product to the total amount of acid sites. ^bSelectivity was defined as the percent of **1** among all the products detected by GC. ^cMass balance on the basis of γ -butyrolactone. Reaction conditions: 1,3,5-trimethylbenzene 288 mmol, γ -butyrolactone 34 mmol, catalyst weight: 1.5 g, 453 K and 6 h.

Table 1 further shows that the supported heteropolyacids exhibited high selectivities and mass-balances ($\geq 84\%$). When the loading amount of $H_4SiW_{12}O_{40}$ was varied, the yield gave a maximum (about 51%) at 40 wt% of the loading, while the mass balance decreased as the loading amount of $H_4SiW_{12}O_{40}$ increased.

Figure 1 shows the results of repeated runs over $10\,\text{wt\%}\text{HSiW/SiO}_2$. Between the runs, the solid catalyst was

Chemistry Letters 2002 1105

Figure 1. Changes of conversion, yield, selectivity and mass balance by repeating the reaction of 1,3,5-trimethylbenzene with γ -butyrolactone over $10 \text{ wt}\%\text{H}_4\text{SiW}_{12}\text{O}_{40}/\text{SiO}_2$. (∇): Conversion of γ -butyrolactone, (\bigcirc): Yield, (\blacksquare) Mass balance, (\triangle): Selectivity of 4-(2,4,6-trimethylphenyl) butyric acid. Reaction conditions: 1,3,5-trimethylbenzene 288 mmol, γ -butyrolactone 34 mmol, catalyst 3.0 g, 453 K, 6 h.

separated from the reaction suspension, and washed with *n*-hexane at room temperature. It should be noted that the conversion tended to reach a near constant value, indicating that this solid was reusable for this reaction.

Table 2 presents the results of the synthesis of 5,8-dimethyl- α -tetralone from γ -butyrolactone and p-xylene. Both 10 wt% and 25 wt%HSiW/SiO $_2$ gave higher yields than those over the other solid acids. Especially, the yield over 25 wt%HSiW/SiO $_2$ reached about 70%. It is presumed that the alkylation/acylation took place subsequently and selectively over the supported heteropoly acids. In conclusion, SiO $_2$ -supported heteropolyacids were excellent for one-step synthesis of dimethyl- α -tetralone from p-xylene and γ -butyrolactone.

There are some reports as for analogous reactions catalyzed by heteropoly compounds. Izumi et al. showed that an acidic Cs salt, $Cs_{2.5}H_{0.5}PW_{12}O_{40},$ was active for acylation with benzoic anhydride. Corma et al. 10,11 studied acylation/alkylation of anisole with α,β -unsaturated acids like crotonic acid. They claimed that $H_3PW_{12}O_{40}/SiO_2$ was more active and selective towards acylation reactions than zeolites such as HY and $H\beta,$ when the activity was compared in the unit of acid amount.

Table 2. Synthesis of dimethyl- α -tetralone from p-xylene and γ -butyrolactone over various solid acid catalysts

Catalyst	Conv.	Yield /%	TONa	S ^b /%	M.B. ^c /%
10 wt%HSiW/SiO ₂	67.5	47.7	15.7	86.4	84
25 wt%HSiW/SiO ₂	75.2	68.7	9.1	78.7	99
$H_4SiW_{12}O_{40}$	16.6	2.9	0.1	61.8	88
H-Y	33.8	5.3	0.1	42.0	73
H-ZSM-5	27.4	2.4	0.4	100.0	75
H- eta	55.6	16.2	0.4	86.4	63

^aTurnover number defined by the ratio of the amount of product to the total amount of acid sites. ^bSelectivity was calculated as percent of **2** among all the products detected by GC. ^cMass balance on the basis of γ -butyrolactone. Reaction conditions: p-xylene 81 mmol, γ -butyrolactone 0.74 mmol, catalyst weight: 0.16 g, 483 K and 2 h.

Kozhevnikov et al. 12 reported Friedel-Crafts acylation of anisole with acetic anhydride over heteropolyacids like $\rm H_3PW_{12}O_{40}$. However, the direct synthesis of tetralone-derivatives from γ -butyrolactone has not been reported yet. Thus this is the first example for the catalytic synthesis of α -tetralone derivatives.

This theme has been conducted under the entrustment contact between New Energy and Industrial Technology Development Organization (NEDO) and Japan Chemical Innovation Institute (JCII).

References

- 1 J. R. Johnson, Org. React., 1, 248 (1942).
- 2 L. A. Mitscher, European Patent 63945 (1982).
- 3 C. E. Olson and A. R. Bader, *Org. Synth.*, **4**, 898 (1963).
- 4 K. Y. Jung and M. Koreeda, J. Org. Chem., **54**, 5667 (1989).
- 5 T. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, and M. Misono, *Chem. Mater.*, 12, 2230 (2000).
- 6 T. Okuhara, T. Nishimura, and M. Misono, *Stud. Surf. Sci. Catal.*, **101**, 580 (1996).
- 7 T. Okuhara, N. Mizuno, and M. Misono, Adv. Catal., 41, 113 (1996).
- 8 T. Okuhara, Catal. Today, 73, 153 (2002).
- Y. Izumi, M. Ogawa, W. Nohara, and K. Urabe, *Chem. Lett.*, 1992, 1987.
- 10 C. De Castro, J. Primo, and A. Corma, J. Mol. Catal. A: Chem., 134, 215 (1998).
- 11 C. Castro, A. Corma, and J. Primo, J. Mol. Catal. A: Chem., 177, 273 (2002).
- 12 J. Kaur, K. Griffin, B. Harrison, and I. V. Kozhevnikov, J. Catal., 208, 448 (2002).